671 research outputs found

    The Intensive Cognitive-Communication Rehabilitation Program for young adults with acquired brain injury

    Full text link
    PURPOSE: This study investigated the effects of an intensive cognitive-communication rehabilitation (ICCR) program for young individuals with chronic acquired brain injury. METHOD: ICCR included classroom lectures; metacognitive instruction, modeling, and application; technology skills training; and individual cognitive-linguistic therapy. Four individuals participated in the intensive program (6 hr with 1-hr lunch break × 4 days × 12 weeks of treatment): 3 participants completed 3 consecutive semesters, and 1 participant completed 1 semester. Two controls did not receive treatment and completed assessments before and after the 12-week treatment interval only. RESULTS: All 4 experimental participants demonstrated significant improvements on at least 1 standardized cognitive-linguistic measure, whereas controls did not. Furthermore, time point significantly predicted participants' scores on 2 of the 4 standardized outcome measures, indicating that as duration in ICCR increased, scores also increased. Participants who completed multiple semesters of ICCR also improved in their therapy and personal goals, classroom behavior, life participation, and quality of life. CONCLUSION: After ICCR, participants showed gains in their cognitive-linguistic functioning, classroom participation, and individual therapy. They also demonstrated improvements outside the classroom and in their overall well-being. There is a gap between the large population of young adults with acquired brain injury who wish to return to higher education and a lack of rehabilitation programs supporting reentry into academic environments; ICCR is a first step in reducing that gap.T32 DC013017 - NIDCD NIH HHSAccepted manuscrip

    Young adults with acquired brain injury show longitudinal improvements in cognition after intensive cognitive rehabilitation

    Get PDF
    PURPOSE: The aim of this study was to assess the effect of an intensive cognitive and communication rehabilitation (ICCR) program on language and other cognitive performance in young adults with acquired brain injury (ABI). METHOD: Thirty young adults with chronic ABI participated in this study. Treatment participants (n = 22) attended ICCR 6 hours/day, 4 days/week for at least one 12-week semester. Deferred treatment/usual care control participants (n = 14) were evaluated before and after at least one 12-week semester. Pre- and postsemester standardized cognitive assessment items were assigned to subdomains. Between-groups and within-group generalized linear mixed-effects models assessed the effect of time point on overall item accuracy and differences by item subdomain. Subdomain analyses were adjusted for multiple comparisons. RESULTS: Between-groups analyses revealed that treatment participants improved significantly faster over time than deferred treatment/usual care participants in overall item accuracy and specifically on items in the verbal expression subdomain. Investigating the three-way interaction between time point, group, and etiology revealed that the overall effects of the treatment were similar for individuals with nontraumatic and traumatic brain injuries. The treatment group showed an overall effect of treatment and significant gains over time in the verbal expression, written expression, memory, and problem solving subdomains. The control group did not significantly improve over time on overall item accuracy and showed significant subdomain-level gains in auditory comprehension, which did not survive correction. CONCLUSIONS: Sustaining an ABI in young adulthood can significantly disrupt key developmental milestones, such as attending college and launching a career. This study provides strong evidence that integrating impairment-based retraining of language and other cognitive skills with “real-world” application in academically focused activities promotes gains in underlying cognitive processes that are important for academic success as measured by standardized assessment items. These findings may prompt a revision to the current continuum of rehabilitative care for young adults with ABI. SUPPLEMENTAL MATERIAL: https://doi.org/10.23641/asha.1932006

    Multi-level outcomes for young adults with acquired brain injury through a remote intensive cognitive rehabilitation approach: a pilot intervention study

    Full text link
    OBJECTIVE: To investigate the effects of the Intensive Cognitive and Communication Rehabilitation (ICCR) program for young adults with acquired brain injury (ABI) using a quasi-experimental pilot intervention study design while transitioning to remote implementation. METHOD: Twelve young adults with chronic ABI (treatment n = 7; control n = 5) participated in ICCR (i.e., lectures, seminars, individual cognitive rehabilitation (CR), technology training) for six hours/day, four days/week, for one or two 12-week semesters. Outcomes included classroom metrics, individual therapy performance, including Goal Attainment Scaling (GAS), standardized cognitive-linguistic assessments, and participation and health-related quality of life (QOL) measures. RESULTS: In the first semester (in-person and remote), treatment participants significantly improved in classroom exams; individual therapy (i.e., memory, writing, GAS); executive function and participation measures, but not QOL. In the second semester (remote), treatment participants significantly improved in classroom exams; essay writing; individual therapy (i.e., writing and GAS); and memory assessment, but not in participation or QOL. Treatment participants enrolled in consecutive semesters significantly improved in classroom exams, individual therapy (i.e., memory), participation and QOL, but not on standardized cognitive assessments. Controls demonstrated no significant group-level gains. CONCLUSION: These preliminary results highlight the benefit of intensive, integrated, and contextualized CR for this population and show promise for its remote delivery.F31 DC017892 - NIDCD NIH HHSAccepted manuscrip

    Bacteroides fragilis outer membrane vesicles preferentially activate innate immune receptors compared to their parent bacteria

    Get PDF
    The release of bacterial membrane vesicles (BMVs) has become recognized as a key mechanism used by both pathogenic and commensal bacteria to activate innate immune responses in the host and mediate immunity. Outer membrane vesicles (OMVs) produced by Gram-negative bacteria can harbor various immunogenic cargo that includes proteins, nucleic acids and peptidoglycan, and the composition of OMVs strongly influences their ability to activate host innate immune receptors. Although various Gram-negative pathogens can produce OMVs that are enriched in immunogenic cargo compared to their parent bacteria, the ability of OMVs produced by commensal organisms to be enriched with immunostimulatory contents is only recently becoming known. In this study, we investigated the cargo associated with OMVs produced by the intestinal commensal Bacteroides fragilis and determined their ability to activate host innate immune receptors. Analysis of B. fragilis OMVs revealed that they packaged various biological cargo including proteins, DNA, RNA, lipopolysaccharides (LPS) and peptidoglycan, and that this cargo could be enriched in OMVs compared to their parent bacteria. We visualized the entry of B. fragilis OMVs into intestinal epithelial cells, in addition to the ability of B. fragilis OMVs to transport bacterial RNA and peptidoglycan cargo into Caco-2 epithelial cells. Using HEK-Blue reporter cell lines, we identified that B. fragilis OMVs could activate host Toll-like receptors (TLR)-2, TLR4, TLR7 and nucleotide-binding oligomerization domain-containing protein 1 (NOD1), whereas B. fragilis bacteria could only induce the activation of TLR2. Overall, our data demonstrates that B. fragilis OMVs activate a broader range of host innate immune receptors compared to their parent bacteria due to their enrichment of biological cargo and their ability to transport this cargo directly into host epithelial cells. These findings indicate that the secretion of OMVs by B. fragilis may facilitate immune crosstalk with host epithelial cells at the gastrointestinal surface and suggests that OMVs produced by commensal bacteria may preferentially activate host innate immune receptors at the mucosal gastrointestinal tract

    Corporate philanthropy, political influence, and health policy

    Get PDF
    Background The Framework Convention of Tobacco Control (FCTC) provides a basis for nation states to limit the political effects of tobacco industry philanthropy, yet progress in this area is limited. This paper aims to integrate the findings of previous studies on tobacco industry philanthropy with a new analysis of British American Tobacco's (BAT) record of charitable giving to develop a general model of corporate political philanthropy that can be used to facilitate implementation of the FCTC. Method Analysis of previously confidential industry documents, BAT social and stakeholder dialogue reports, and existing tobacco industry document studies on philanthropy. Results The analysis identified six broad ways in which tobacco companies have used philanthropy politically: developing constituencies to build support for policy positions and generate third party advocacy; weakening opposing political constituencies; facilitating access and building relationships with policymakers; creating direct leverage with policymakers by providing financial subsidies to specific projects; enhancing the donor's status as a source of credible information; and shaping the tobacco control agenda by shifting thinking on the importance of regulating the market environment for tobacco and the relative risks of smoking for population health. Contemporary BAT social and stakeholder reports contain numerous examples of charitable donations that are likely to be designed to shape the tobacco control agenda, secure access and build constituencies. Conclusions and Recommendations Tobacco companies' political use of charitable donations underlines the need for tobacco industry philanthropy to be restricted via full implementation of Articles 5.3 and 13 of the FCTC. The model of tobacco industry philanthropy developed in this study can be used by public health advocates to press for implementation of the FCTC and provides a basis for analysing the political effects of charitable giving in other industry sectors which have an impact on public health such as alcohol and food

    Monogenic conditions and central nervous system anomalies:A prospective study, systematic review and meta-analysis

    Get PDF
    Objectives: Determine the incremental diagnostic yield of prenatal exome sequencing (pES) over chromosome microarray (CMA) or G-banding karyotype in fetuses with central nervous system (CNS) abnormalities.Methods: Data were collected via electronic searches from January 2010 to April 2022 in MEDLINE, Cochrane, Web of Science and EMBASE. The NHS England prenatal exome cohort was also included. Incremental yield was calculated as a pooled value using a random-effects model. Results: Thirty studies were included (n = 1583 cases). The incremental yield with pES for any CNS anomaly was 32% [95%CI 27%–36%; I2 = 72%]. Subgroup analysis revealed apparent incremental yields in; (a) isolated CNS anomalies; 27% [95%CI 19%–34%; I2 = 74%]; (b) single CNS anomaly; 16% [95% CI 10%–23%; I2 = 41%]; (c) more than one CNS anomaly; 31% [95% Cl 21%–40%; I2 = 56%]; and (d) the anatomical subtype with the most optimal yield was Type 1 malformation of cortical development, related to abnormal cell proliferation or apoptosis, incorporating microcephalies, megalencephalies and dysplasia; 40% (22%–57%; I2 = 68%). The commonest syndromes in isolated cases were Lissencephaly 3 and X-linked hydrocephalus. Conclusions: Prenatal exome sequencing provides a high incremental diagnostic yield in fetuses with CNS abnormalities with optimal yields in cases with multiple CNS anomalies, particularly those affecting the midline, posterior fossa and cortex.</p

    The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III

    Get PDF
    The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Ly alpha forest, and a radial velocity search for planets around ~8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap, bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameters pipeline, which has better determination of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from submitted version

    T Regulatory Cells Control Susceptibility to Invasive Pneumococcal Pneumonia in Mice

    Get PDF
    Streptococcus pneumoniae is an important human pathogen responsible for a spectrum of diseases including pneumonia. Immunological and pro-inflammatory processes induced in the lung during pneumococcal infection are well documented, but little is known about the role played by immunoregulatory cells and cytokines in the control of such responses. We demonstrate considerable differences in the immunomodulatory cytokine transforming growth factor (TGF)-β between the pneumococcal pneumonia resistant BALB/c and susceptible CBA/Ca mouse strains. Immunohistochemistry and flow cytometry reveal higher levels of TGF-β protein in BALB/c lungs during pneumococcal pneumonia that correlates with a rapid rise in lung Foxp3+Helios+ T regulatory cells. These cells have protective functions during pneumococcal pneumonia, because blocking their induction with an inhibitor of TGF-β impairs BALB/c resistance to infection and aids bacterial dissemination from lungs. Conversely, adoptive transfer of T regulatory cells to CBA/Ca mice, prior to infection, prolongs survival and decreases bacterial dissemination from lungs to blood. Importantly, strong T regulatory cell responses also correlate with disease-resistance in outbred MF1 mice, confirming the importance of immunoregulatory cells in controlling protective responses to the pneumococcus. This study provides exciting new evidence for the importance of immunomodulation during pulmonary pneumococcal infection and suggests that TGF-β signalling is a potential target for immunotherapy or drug design
    corecore